Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Ping Jia, ${ }^{\text {a }}{ }^{*} \ddagger$ Zong-Hui Guo, ${ }^{\text {b }}$ Zhi-Fang Hao, ${ }^{\text {a }}$ Qiang $\mathrm{Xu}^{\mathbf{b}}$ and Jian-Xin Li ${ }^{\text {a }}$

${ }^{\text {a }}$ School of Chemistry \& Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
\# Current address: School of Chemistry \& Chemical Engineering Bohai University Jinzhou 121000 People's Republic of China

Correspondence e-mail: Ivzhifeng@nju.org.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.062$
$w R$ factor $=0.153$
Data-to-parameter ratio $=14.8$

For details of how these key indicators were
automatically derived from the article, see http://journals.iucr.org/e.

[^0]
8-Benzyl-5,7-bis(benzyloxy)-4H-benzopyran-4-one

In the title compound, $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{4}$, the chromone system is essentially planar. There are intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in the crystal structure.

Comment

5,7-Dihydroxychromone, which is a germination and growth inhibitor (Spencer \& Tjarks, 1985), is a flavanoid decomposition product that has been found as a constituent in certain plant extracts (Pendse et al., 1973). In the process of its preparation, we obtained the intermediate (I). As part of this study, we have undertaken the X-ray crystallographic analysis of (I) in order to elucidate the conformation and configuration of this intermediate (Fig. 1 and Table 1).

(I)

The geometrical parameters of the chromone system in (I) are comparable to those of the related structures reported earlier (e.g. Hao et al., 2006). The chromone system is essentially planar. The benzyl group attached at atom O3 is almost coplanar with the chromone system, with a dihedral angle of 7.4 (3) ${ }^{\circ}$, while the other benzyl groups, at atoms O 4 and C 8 , are twisted away from it, with dihedral angles of 79.7 (3) and 71.8 (3) ${ }^{\circ}$, respectively.

In the crystal structure, the molecular packing is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2) involving the aromatic rings.

Experimental

A mixture of 5-benzyl-2,4-bis(benzyloxy)-6-hydroxyacetophenone (3.9 g) and sodium (0.9 g) in ethyl formate (15 ml) was stirred at 263 K for 6 h . After addition of methanol (5 ml) and ice-water (30 ml), the mixture was acidified with acetic acid. The excess of ethyl formate was removed by a current of air. The mixture was filtered and the solid was dissolved in ethanol. After the solution was acidified with concentrated hydrochloric acid, (I) was isolated by column chromatography of the residue after evaporation of the solvent on silica gel, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. Single crystals of (I) were obtained by slow evaporation of a petroleum ether- $\mathrm{CHCl}_{3}(1: 1 \mathrm{v} / \mathrm{v})$ solution (yield 65\%).

Received 16 May 2006
Accepted 23 June 2006

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{4}$
$M_{r}=448.49$
Monoclinic, $P 2_{1} / c$
$a=9.723(2) \AA \AA^{2} \AA$
$b=9.746(2) \AA$
$c=24.698(5) \AA$
$\beta=95.15(3)^{\circ}{ }^{\circ}$
$V=2330.9(8) \AA^{3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(XCAD4; Harms \& Wocadlo, 1995)
$T_{\text {min }}=0.959, T_{\text {max }}=0.983$
4828 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.153$
$S=1.00$
4549 reflections
308 parameters
H -atom parameters constrained
$Z=4$
$D_{x}=1.278 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.35 \times 0.32 \times 0.21 \mathrm{~mm}$

4549 independent reflections 2228 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.078$
$\theta_{\text {max }}=26.0^{\circ}$
3 standard reflections every 200 reflections intensity decay: none

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.052 P)^{2} \\
&+0.32 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Extinction correction: SHELXTL
Extinction coefficient: 0.0250 (15)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$).

$\mathrm{O} 2-\mathrm{C} 3$	$1.229(4)$	$\mathrm{O} 4-\mathrm{C} 7$	$1.358(3)$
$\mathrm{O} 3-\mathrm{C} 5$	$1.355(3)$		
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 9$	$118.3(3)$	$\mathrm{C} 7-\mathrm{O} 4-\mathrm{C} 17$	$118.7(2)$
$\mathrm{C} 5-\mathrm{O} 3-\mathrm{C} 10$	$119.8(2)$		
$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-0.4(4)$	$\mathrm{C} 8-\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$	$-104.8(3)$
$\mathrm{O} 4-\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$90.5(3)$		

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 19-\mathrm{H} 19 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	2.63	$3.453(3)$	148
$\mathrm{C} 20-\mathrm{H} 20 \cdots 2^{\text {ii }}$	0.93	2.61	$3.250(3)$	127
$\mathrm{C} 2-\mathrm{H} 2 \cdots C g A^{\text {iii }}$	0.93	2.99	$3.545(4)$	120
$\mathrm{C} 17-\mathrm{H} 17 A \cdots C g B^{\text {iv }}$	0.97	2.95	$3.430(3)$	112

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $x+1, y-1, z$; (iii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (iv) $-x+2,-y,-z$. CgA and CgB denote the centroids of aromatic rings C25-C30 and C18C23, respectively.

H atoms were positioned geometrically and refined as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances constrained to 0.93

Figure 1

The structure of (I), showing 30\% probability displacement ellipsoids and the atom-numbering scheme.
(aromatic CH) or $0.97 \AA$ (methylene CH_{2}), and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (carrier C).

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

This work was supported by the National Natural Science Foundation of China (No. 20572043). Partial support by the Modern Analytical Center at Nanjing University is also gratefully acknowledged.

References

Enraf-Nonius. (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
Hao, Z.-F., Xu, Q., Lu, Z.-F. \& Li, J.-X. (2006). Acta Cryst. E62, o552-o554. Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Pendse, R., Rao, A. V. R. \& Venkataraman, K. (1973). Phytochemistry, 12, 2033-2034.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Spencer, G. F. \& Tjarks, L. W. (1985). J. Plant Growth Regul. 4, 177-180.

[^0]: C) 2006 International Union of Crystallography All rights reserved

